Secure gateway for Internet of Things with internal AAA mechanism

Dominik Samociuk, Błazej Adamczyk

Abstract


In this paper, we describe secure gateway for Internet of Things (IoT) devices with internal AAA mechanism, implemented to connect IoT sensors with Internet users. Secure gateway described in this paper allows to (1) authenticate each connected device, (2) authorise connection or reconfiguration performed by the device and (3) account each action. The same applies to Internet users who want to connect, download data from or upload data to an IoT device. Secure Gateway with internal AAA mechanism could be used in Smart Cities environments and in other IoT deployments where security is a critical concern. The mechanism presented in this paper is a new concept and has been practically validated in Polish national research network PL-LAB2020.

Full Text:

PDF

References


A. Myasnikov, V. Shpilrain, and A. Ushakov. Non-commutative cryptography and complexity of group-theoretic problems. American Mathematical Society, 2011.

K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J.-s. Kang, and Ch. Park. New Public-Key Cryptosystem Using Braid Groups, pages 166--183. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000. DOI: 10.1007/3-540-44598-6_10

B. Eick and D. Kahrobaei. Polycyclic groups: a new platform for cryptography, preprint arxiv: math.gr/0411077. Technical report, 2004.

J. Gryak and D. Kahrobaei. The status of the polycyclic group-based cryptography: A survey and open problems. Groups Complexity Cryptology, De Gruyter, 8(2):171--186, 2016. DOI: 10.1515/gcc-2016-0013

V. Shpilrain and A. Ushakov. Thompson's Group and Public Key Cryptography, volume 3531, pages 151--163. Springer Berlin Heidelberg, 2005. DOI: 10.1007/11496137_11

I. Chatterji, D. Kahrobaei, and N. Lu. Cryptosystems using subgroup distortion. arXiv:1610.07515v1.

V. Shpilrain and G. Zapata. Combinatorial Group Theory and Public Key Cryptography. Applicable Algebra in Engineering, Communication and Computing, 17(3):291--302, 2006. DOI: 10.1007/s00200-006-0006-9

M. Habeeb, D. Kahrobaei, and V. Shpilrain. A secret sharing scheme based on group presentations and the word problem. Contemp. Math., Amer. Math. Soc., 582:143--150, 2012. DOI: 10.1090/conm/582/11557

D. Kahrobaei and V. Shpilrain. Using Semidirect Product of (Semi)groups in Public Key Cryptography, volume 9709, pages 132--141. Springer International Publishing, 2016. DOI: 10.1007/978-3-319-40189-8_14

G. Baumslag, B. Fine, and X. Xu. Cryptosystems using linear groups. Applicable Algebra in Engineering, Communication and Computing, 17(3):205--217, 2006. DOI: 10.1007/s00200-006-0003-z

G. Petrides. Cryptanalysis of the Public Key Cryptosystem Based on the Word Problem on the Grigorchuk Groups, volume 2898, pages 234--244. Springer Berlin Heidelberg, 2003. DOI: 10.1007/978-3-540-40974-8_19

D. Grigoriev and I. Ponomarenko. Homomorphic public-key cryptosystems and encrypting boolean circuits. Applicable Algebra in Engineering, Communication and Computing, 17(3):239--255, 2006. DOI: 10.1007/s00200-006-0005-x

A. Shamir. How to share a secret. Commun. ACM, 22(11):612--613, 1979. DOI: 10.1145/359168.359176

D. Grigoriev and V. Shpilrain. Authentication schemes from actions on graphs, groups, or rings. Annals of Pure and Applied Logic, 162(3):194--200, 2010. DOI: 0.1016/j.apal.2010.09.004

K. Hauschild and W. Rautenberg. Interpretierbarkeit in der gruppentheorie. Algebra Universalis, 1:136--151, 1971.

T. Korbeda. Right-angled Artin groups and their subgroups. Lecture notes Yale University, pages 1--50, 2013.

R. Charney. An introduction to right-angled Artin groups. Geometriae Dedicata, 125(1):141--158, 2007. DOI: 10.1007/s10711-007-9148-6

W. Magnus, A. Karrass, and D. Solitar. Combinatorial group theory. Dover Publications, New York, 1976.

L. Babaisi. Graph isomorphism in quasipolynomial time. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC '16, pages 684--697. ACM, 2016. DOI: 10.1145/2897518.2897542

H.-N. Liu, C. Wrathall, and K. Zeger. Efficient solution of some problems in free partially commutative monoids. Information and Computation, 89(2):180 -- 198, 1990. DOI: 10.1016/0890-5401(90)90010-F

J. Crisp, E. Godelle, and B. Wiest. The conjugacy problem in right-angled Artin groups and their subgroups. Journal of topology, 2(3):442--460, 2009. DOI: 10.1112/jtopol/jtp018

M. Garey and J. Johnson. Computers and Intractability, A Guide to NP-Completeness. W. H. Freeman, 1979.

M. Bridson. Cube complexes, subgroups of mapping class groups, and nilpotent genus. Geometric group theory, IAS/Park City Math. Ser., 21(21), 2014.

E. Rips. Subgroups of small cancellation groups. Bulletin of the London Mathematical Society, 14(1):45--47, 1982. DOI: 10.1112/blms/14.1.45

F. Haglund and D. T. Wise. Special cube complexes. Geometric and Functional Analysis, 17(5):1551--1620, 2008. DOI: 10.1007/s00039-007-0629-4

M.R. Bridson and C.F. Miller. Recognition of subgroups of direct products of hyperbolic groups. Proceedings of the American Mathematical Society, 132(1):59--65, 2004.

S. Kijima, Y. Otachi, T. Saitoh, and T. Uno. Subgraph isomorphism in graph classes. Discrete Mathematics, 312(21):3164--3173, 2012. DOI: 10.1016/j.disc.2012.07.010




DOI: http://dx.doi.org/10.20904/283017

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Dominik Samociuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 1896-5334 (print), 2300-889X (online)

Open Acces CrossRef Indexed in DOAJ